一、產品特點
- 一體化集成,功能齊全。內置光源、比色皿支架和光譜模塊,放置比色皿可直接測量,簡單易用。
- 超小體積,便于集成。體積非常小,加上殼體即可實現小型便攜設備。
- 接口豐富,靈活通信。支持MicroUSB、Uart、藍牙等通信方式,可適配PC、開發(fā)板、單片機、手機等使用場景。
- 全面SDK適配,自由選擇開發(fā)平臺。C++、C#、Labview、Matlab、Qt、Linux、Android等全面支持。
二、應用場景
三、技術參數
項目 | 參數 | 描述 |
---|---|---|
產品型號 | NIR-M-T11 | 液體透射一體化測量 |
波長范圍 | 1350-2150 | 近紅外常用波長或波數表示范圍 |
光學分辨率 | Typ. 12 nm, Max. 14 nm | 常用峰值波長半高寬表示 |
波長精度 | Typ.±1 nm, Max.±2 nm | 測量峰值與校準樣品峰值的波長偏差 |
信噪比 | 6000:1 | 滿量程相對強度值與系統電子噪聲波動值的比值 |
狹縫尺寸 | 25um | 光譜儀入光口狹縫,量產內置,不可更改 |
通訊接口 | MicroUSB、UART、藍牙 | MicroUSB直連電腦,Uart用于串口,藍牙用于手機APP |
傳感器 | 溫濕度傳感器 | 用于顯示模塊內部溫濕度值 |
供電 | 5V-300mA | USB供電、鋰電池供電或外置電源均可 |
四、原理介紹
4.1 化學原理
當紅外光照射物體時,若物體中的分子選擇性吸收某些波長的光,則會產生吸收光譜,通過對特征光譜進行標定和建模,可實現被測樣品的定性或定量分析。 通常情況下,由分子基頻振動產生的吸收光譜在中紅外波段,對應光譜范圍是2.5-25um,對應波數范圍是4000-400cm-1;而分子振動的倍頻或組合頻產生的吸收光譜范圍會落在近紅外波長,對應波長范圍是0.7-2.5um(即700-2500nm),對應波數范圍是4000-14825cm-1。 有機化合物中有很多含氫基團(X-H),而含氫基團的一倍頻位于近紅外區(qū),因此,近紅外測試效果最好的分子對象是含氫基團,主要基團如下圖:
4.2 光學原理
本型號近紅外光譜模組采用是光柵分光設計,光經過狹縫(Slit)并準直(Collimating)照射到光柵(Diffraction)上,由光柵分光后產生的不同波長的光,并排射到數字鏡像陣列(DLP)反射鏡,通過編程控制每個微型反射鏡,依次把對應波長的光反射到單點InGaAs探測器上,再由ADC轉換為數字信號并解析成光譜曲線。具體原理圖如下:
該光路最大的優(yōu)勢是把價格昂貴的傳統線陣InGaAs探測器,用價格便宜的單點探測器替代,同時依托臺灣中強光電在江蘇昆山的投影儀模組精密生產線實現了量產化,把單價10萬+的近紅外光譜儀,做到單價1萬+,進而讓許多用不起的應用場景變成了可能。 該光路實現把光源做了內置處理,從而避免了光纖接入和外置光源配備,使得體積變得非常小,很適合于手持設備集成開發(fā)。
4.3 測量原理
反射型近紅外光譜儀主要用于接觸式測量物體的光譜反射率或吸光度。該反射率是基于標準白板作為參考計算得出,吸光度是由反射率(或透射率)進行數學變換后的表達。
反射率或吸光度的測量流程如下:
反射率的計算公式如下:
其中R表示反射率(Reflectance),Sample是指樣品光譜,Reference是指參考光譜。
對反射率公式作數學變換可得到吸光度公式:
對于精度要求較高的用戶,可以再存儲一次暗背景,用于扣除光譜儀的電子噪聲基線(主要來自于InGaAs探測器和電路板),稱為暗背景。在流程圖上增加一個步驟即可:把光譜儀測量口避開物體,懸空朝下對著空氣,點擊測量,獲取暗背景光譜。
此時反射率的計算公式有所變化,具體如下:
其中R表示反射率(Reflectance),Sample是指樣品光譜,Reference是指參考光譜,Dark是暗背景光譜。
對反射率公式作數學變換可得到吸光度公式:
五、產品選型
5.1 按波長范圍選型
因近紅外光譜儀種類和型號較多,會導致缺乏使用經驗的用戶不知如何選型。波長范圍是近紅外光譜儀選型時最重要的指標,不同范圍差價非常大。常用紅外光譜儀按照波長范圍可以分為以下幾類:
波長范圍 | 探測器類型 | 特點 | 分子振動頻 |
---|---|---|---|
700-1100nm | 硅元素(Si) | 價格便宜,范圍短窄,有機分子識別能力能力差 | 多倍頻/混合頻 |
900-1700nm | 銦鎵砷(InGaAs) | 價格適中,范圍適中,有機分子識別能力適中 | 一倍頻/混合頻 |
900-2500nm | 銦鎵砷(InGaAs) | 價格較貴,范圍較廣,有機分子識別能力強 | 一倍頻/混合頻 |
2.5um-25um | 銻砷銦(InAsSb) | 價格非常貴,體積大,有機分子識別能力非常強 | 基頻 |
5.2 按預算價格范圍選型
紅外光譜儀不同原理和波長范圍的價格差異很大,根據采購預算,可以按照價格差異作如下分類:
波長范圍 | 探測器類型 | 預算范圍 |
---|---|---|
700-1100nm | 線陣或面陣CCD型 | 1-5萬 |
900-1700nm | DMD+單點InGaAs型 | 1-2萬 |
900-1700nm | 線陣InGaAs型 | 8-18萬 |
1350-2150nm | DMD+單點InGaAs型 | 4-6萬 |
900-2500nm | 線陣InGaAs型 | 20-30萬 |
2.5-25um | 傅里葉紅外 | 20-50萬 |
5.3 按測量光路場景選型
根據實際測量時使用的光路場景,如反射光路、透射光路或自行搭建光路,可選擇不同類型的光譜儀或模塊。下面僅對譜研互聯提供的各種型號進行對比介紹:
反射型 NIR-M-R2
900-1700nm,內置光源,裸板反射模塊,支持USB、UART 和藍牙通訊(需另配藍牙模塊),常用于手持設備開發(fā),適用于接觸式反射光譜測量
透射型 NIR-M-T1
900-1700nm,透射型,內置光源和準直鏡,裸板透射模塊,支持USB、UART 通信,用于溶液的光譜透射率測量,可實現有機溶液快速定性和定量分析。
光纖型 NIR-M-F1
900-1700nm,光纖型,裸板光纖接口模塊,支持USB、UART 通信,SMA905 光纖接口,配合外置光源、反射探頭或反射式積分球、余弦校正器、比色皿支架等,可搭建較為靈活的光譜測量系統,用于反射或透射光譜測量,適合搭建式測量場景。
反射型 NIR-R210
900-1700nm,反射型,內置鋰電池和藍牙模組,鋁合金殼體,支持LOGO 定制,支持USB、UART 和藍牙通訊,常用于手持設備開發(fā),適用于接觸式反射光譜測量。
透射型 NIR-M-T1-C
900-1700nm,透射型,帶殼體,內置光源和準直鏡,支持USB、UART 通信,用于溶液的光譜透射率測量,可實現有機溶液快速定性和定量分析。
透射型 NIR-M-F1-C
900-1700nm,光纖型,帶殼體,支持USB、UART 通信,SMA905 光纖接口,配合外置光源、反射探頭或反射式積分球、余弦校正器、比色皿支架等,可搭建較為靈活的光譜測量系統,用于反射或透射光譜測量,適合搭建式測量場景。
反射型 NIR-M-R11
1350-2150nm,反射型,InGaAs 探測器,內置四只鹵素燈,支持USB、UART 通信,常用于手持設備開發(fā),適用于接觸式反射光譜測量
透射型 NIR-M-F11
1350-2150nm,光纖型,裸板光纖接口模塊,支持USB、UART 通信,SMA905 光纖接口,配合外置光源、反射探頭或反射式積分球、余弦校正器、比色皿支架等,可搭建較為靈活的光譜測量系統,用于反射或透射光譜測量,適合搭建式測量場景。
透射型 NIR-M-T11
1350-2150nm,透射型,內置光源和準直鏡,裸板透射模塊,支持USB、UART 通信,用于溶液的光譜透射率測量,可實現有機溶液快速定性和定量分析.
反射型 NIR-R310L
1350-2150nm,反射型,InGaAs 探測器,內置四只鹵素燈,內置鋰電池和藍牙模組,鋁合金殼體,支持LOGO 定制,支持USB、UART 和藍牙通訊,常用于手持設備開發(fā),適用于接觸式反射光譜測量。
光纖型 NIR-M-F11-C
1350-2150nm,光纖型,帶殼體,支持USB、UART 通信,SMA905 光纖接口,配合外置光源、反射探頭或反射式積分球、余弦校正器、比色皿支架等,可搭建較為靈活的光譜測量系統,用于反射或透射光譜測量,適合搭建式測量場景。
透射型 NIR-M-T11-C
1350-2150nm,透射型,帶殼體,內置光源和準直鏡,支持USB、UART 通信,用于溶液的光譜透射率測量,可實現有機溶液快速定性和定量分析。
六、訂購信息
6.1 光譜儀或光譜模塊單獨訂購
該光譜儀或模塊最大的優(yōu)點是高度的一體化集成,無需外部光源和比色皿支架。由于內置了準直光路,采集光譜強度值非常高,大大降低了信噪比,使得相對信噪比高于傳統線陣銦鎵砷型光譜儀。
產品名稱 | 型號 | 數量 | 單價 | 金額 |
---|---|---|---|---|
透射一體型近紅外光譜模塊 | NIR-M-T11 | 1 | 43890 | 43890 |
透射一體型近紅外光譜儀 | NIR-M-T11-C | 1 | 44990 | 44990 |
七、典型光譜
近紅外光譜最常使用的是吸光度模式,如何由原始光譜圖計算得出吸光度,可參見第四章第3節(jié)測量原理。對于透明樣品,最好是墊上白板,把透過的光再反射回樣品并進入光譜儀測量口,以增加光穿過樣品的光程。在大多數反射測量中,光譜數據的絕對吸光度不宜直接使用,應先做歸一化等預處理。